Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

نویسندگان

  • Lulu Cai
  • Neng Qiu
  • Mingli Xiang
  • Rongsheng Tong
  • Junfeng Yan
  • Lin He
  • Jianyou Shi
  • Tao Chen
  • Jiaolin Wen
  • Wenwen Wang
  • Lijuan Chen
چکیده

The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa) methoxy poly(ethylene glycol) methyl ether (mPEG) to gambogic acid (GA-mPEG₂₀₀₀) through an ester linkage and characterized by (1)H nuclear magnetic resonance. The GA-mPEG₂₀₀₀ conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG₂₀₀₀ micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide) tests demonstrated that the GA-mPEG₂₀₀₀ micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG₂₀₀₀ micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG₂₀₀₀ micelles may have promising applications in tumor therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment

Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently,...

متن کامل

'Click Chemistry' Synthesis of Novel Natural Product-Like Caged Xanthones Bearing a 1,2,3-Triazole Moiety with Improved Druglike Properties as Orally Active Antitumor Agents.

DDO-6101, a natural-product-like caged xanthone discovered previously in our laboratory based on the pharmacophoric scaffold of the Garcinia natural product gambogic acid (GA), shows potent cytotoxicity in vitro, but poor efficacy in vivo due to its poor druglike properties. In order to improve the druglike properties and in vivo antitumor potency, a novel series of ten triazole-bearing caged x...

متن کامل

Novel Natural Product-like Caged Xanthones Bearing a Carbamate Moiety Exhibit Antitumor Potency and Anti-Angiogenesis Activity In vivo

DDO-6101, a simplified structure obtained from the Garcinia natural product (NP) gambogic acid (GA), has been previously shown to possess high cytotoxicity to a variety of human tumour cell lines. To improve its physicochemical properties and in vivo cytotoxic potency, a series of novel carbamate-bearing derivatives based on DDO-6101 was synthesized and characterized. The structural modificatio...

متن کامل

Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer

BACKGROUND Delivery of a high concentration of anticancer drugs specifically to cancer cells remains the biggest challenge for the treatment of multidrug-resistant cancer. Poloxamers and D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) are known inhibitors of P-glycoprotein (P-gp). Mixed micelles prepared from Poloxamer 407 and TPGS may increase the therapeutic efficacy of the drug by d...

متن کامل

Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014